Normal Bases and Completely Free Elements in Prime Power Extensions over Finite Fields
نویسندگان
چکیده
منابع مشابه
Normal bases and primitive elements over finite fields
Let q be a prime power, m ≥ 2 an integer and A = ( a b c d ) ∈ GL2(Fq), where A 6= ( 1 1 0 1 ) if q = 2 and m is odd. We prove an extension of the primitive normal basis theorem and its strong version. Namely, we show that, except for an explicit small list of genuine exceptions, for every q, m and A, there exists some primitive x ∈ Fqm such that both x and (ax+b)/(cx+d) produce a normal basis ...
متن کاملStructure of finite wavelet frames over prime fields
This article presents a systematic study for structure of finite wavelet frames over prime fields. Let $p$ be a positive prime integer and $mathbb{W}_p$ be the finite wavelet group over the prime field $mathbb{Z}_p$. We study theoretical frame aspects of finite wavelet systems generated by subgroups of the finite wavelet group $mathbb{W}_p$.
متن کاملCompletely Prime Ideal Rings and Their Extensions
Let R be a ring and let I 6= R be an ideal of R. Then I is said to be a completely prime ideal of R if R/I is a domain and is said to be completely semiprime if R/I is a reduced ring. In this paper, we introduce a new class of rings known as completely prime ideal rings. We say that a ring R is a completely prime ideal ring (CPI-ring) if every prime ideal of R is completely prime. We say that a...
متن کاملConstruction of Self-Dual Integral Normal Bases in Abelian Extensions of Finite and Local Fields
Let F/E be a finite Galois extension of fields with abelian Galois group Γ. A self-dual normal basis for F/E is a normal basis with the additional property that TrF/E(g(x), h(x)) = δg,h for g, h ∈ Γ. Bayer-Fluckiger and Lenstra have shown that when char(E) 6= 2, then F admits a self-dual normal basis if and only if [F : E] is odd. If F/E is an extension of finite fields and char(E) = 2, then F ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 1996
ISSN: 1071-5797
DOI: 10.1006/ffta.1996.0002